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The Memory Capacity & Cost Challenge

• Modern workloads (AI, AGI, In-Memory DBs) 
demand massive memory.

• DRAM is fast, but faces significant limitations:

▪ High cost per gigabyte.

▪ Scalability challenges (power, density, thermal).

▪ Increasing Total Cost of Ownership (TCO) for data centers.



Emerging Memory Hierarchy With CXL
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CXL: Bridging the Memory-Storage Gap



CXL: A New Paradigm for Memory Expansion
• Compute Express Link (CXL) decouples the memory controller from the 

CPU.

• Extends memory semantics (load/store) to external devices.

• Current CXL Devices:
▪ DRAM-only memory expanders.
▪ Successfully increase capacity and bandwidth.
▪ But still rely exclusively on expensive DRAM w/ dedicated CXL controller

▪ inheriting its cost and capacity limitation issues.

• Question: How can we leverage CXL to achieve both massive capacity and 
cost-effectiveness?



Our Solution: The CMM-H Hybrid Module

• Core Concept: A single CXL device integrating:
▪ A small, fast DDR DRAM cache.
▪ A large, cost-effective NAND flash backend.

• Goal: Expose terabyte-scale capacity while 
device-side caching delivers high performance.



CMM-H Architecture
• Host Interface: PCIe Gen5x8, CXL 1.1 

Type 3.

• Device Memory:

▪ 48 GB DDR4 DRAM (Cache)

▪ 1 TB off-the-shelf NVMe SSD 
(Backend Storage, 2/4 TB and 2 
SSDs are supported as well)

• Controller:

▪ FPGA-based CXL End Point (EP).

▪ Internal Cache Controller manages 
data movement.

▪ Policy: 8-way LRU replacement, 
Write allocate/Write-back.



Operational Workflow: Hits and Misses

1.Host issues a memory request (Read/Write).

2.Cache Hit (Light Blue Path): Data is in DRAM cache. Fast response.

3.Cache Miss (Dark Blue Path): Data is fetched from the SSD backend 
and placed into the DRAM cache.



Experimental Setup
• Host System:

▪ CPU: Intel Xeon 6710E (Dual-socket)
▪ Local Memory: DDR5 @ 5600 MT/s
▪ OS: Ubuntu 24.04 (Kernel 6.11)
▪ Management: numactl for memory tiering/interleaving

• CMM-H Device:
▪ Altera Agilex 7 FPGA, Advertised Capacity: 1 TB (up to 4 TB)
▪ Cache: 48 GB DDR4
▪ One CMM-H device per CPU socket, appearing as a CPU-less 

NUMA node.



Microbenchmark: Bandwidth vs. Working Set Size

• Peak Bandwidth (~27 GB/s): Achieved when the working set fits within the 48 GB DRAM cache.

• Graceful Degradation: Bandwidth decreases as the working set exceeds cache size.

• Stable Miss-driven Performance (~5 GB/s): The bandwidth stabilizes once the working set is much 
larger than the cache.



System-Level: Latency vs. Bandwidth

• Comparison: DRAM-Only vs. DRAM + CMM-H (10:1 interleave)

• Key Finding:
▪ Combined system achieves 4% higher peak bandwidth.
▪ At high bandwidth levels, the combined system exhibits lower average latency due to better 

request scheduling.



Real-World App 1: In-Memory Database (Redis)

• Key Results (Normalized to DRAM-Only):
▪ 3:1 DRAM-to-CMM-H Ratio: Achieves 95% of the baseline throughput.
▪ 1:1 DRAM-to-CMM-H Ratio: Achieves 90% of the baseline throughput.

• Latency: p99 latency increases by about 30% due to cache misses.



Real-World App 2: HPC (NAS Parallel Benchmarks)

• Two Kernels, Two Stories:
▪ Conjugate Gradient (CG): Performance improves by up to 33% with CMM-H due to 

increased memory bandwidth.

▪ Multi-Grid (MG): Performance degrades due to latency sensitivity and sub-optimal 
NUMA placement.



Real-World App 3: Graph Analytics (Graph500)

• Workload: Breadth-First Search (BFS) on a 100 GB graph.

• Key Results:
▪ 2:1 DRAM-to-CMM-H Ratio: A minor 8% performance decrease.

▪ 10:1 DRAM-to-CMM-H Ratio: A 10% 
performance improvement over the DRAM-only system.



Summary of Contributions

1. We present CMM-H, a novel hybrid CXL memory 
architecture integrating DRAM and SSD.

2. We demonstrate its effectiveness: The device-side cache 
successfully hides SSD latency.

3. We show CMM-H can augment system bandwidth, 
boosting performance for certain applications.

4. We provide insights into tiered memory performance, 
highlighting the importance of access patterns and NUMA-
awareness.



Conclusion & Future Work
• Conclusion:

▪ CMM-H represents a viable and cost-effective path toward 
terabyte-scale, high-performance memory expansion.

▪ It paves the way for more flexible and composable memory 
hierarchies.

• Future Directions:
▪ Evaluating multi-CMM-H device configurations.
▪ Exploring advanced, application-aware caching policies.
▪ Leveraging the host API for direct application control (cache 

prefetching and evicting).



Thank You

Questions?

Learn more about CMM-H
Gongjin Sun, gongjin.s@samsung.com


